学习啦>学习方法>通用学习方法>复习方法>

人教版六年级数学下册期末复习资料

时间: 威敏1027 分享

  临近小学六年级数学期末考试,复习内容有哪些呢?下面学习啦小编为你整理了人教版六年级数学下册期末复习资料,希望对你有帮助。

  六年级数学下册期末复习资料(第一单元)

  (一)、折扣和成数

  1、折扣:用于商品,现价是原价的百分之几,叫做折扣。通称“打折”。

  几折就是十分之几,也就是百分之几十。例如:八折=8/10=80﹪,

  六折五=6.5/10=65/100=65﹪

  解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。

  商品现在打八折:现在的售价是原价的80﹪

  商品现在打六折五:现在的售价是原价的65﹪

  2、成数:

  几成就是十分之几,也就是百分之几十。例如:一成=1/10=10﹪

  八成五=8.5/10=85/100=80﹪

  解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。

  这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10﹪

  今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪

  (二)、税率和利率

  1、税率

  (1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

  (2)纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。

  (3)应纳税额:缴纳的税款叫做应纳税额。

  (4)税率:应纳税额与各种收入的比率叫做税率。

  (5)应纳税额的计算方法:

  应纳税额=总收入×税率

  收入额=应纳税额÷税率

  2、利率

  (1)存款分为活期、整存整取和零存整取等方法。

  (2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。

  (3)本金:存入银行的钱叫做本金。

  (4)利息:取款时银行多支付的钱叫做利息。

  (5)利率:利息与本金的比值叫做利率。

  (6)利息的计算公式:

  利息=本金×利率×时间

  利率=利息÷时间÷本金×100%

  (7)注意:如要上利息税(国债和教育储藏的利息不纳税),则:

  税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)

  税后利息=本金×利率×时间×(1-利息税率)

  购物策略:

  估计费用:根据实际的问题,选择合理的估算策略,进行估算。

  购物策略:根据实际需要,对常见的几种优惠策略加以分析和比较,并能够最终选择最为优惠的方案

  学后反思:做事情运用策略的好处

  六年级数学下册期末复习资料(第二单元)

  一、圆柱

  1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。

  圆柱也可以由长方形卷曲而得到。

  两种方式:

  1.以长方形的长为底面周长,宽为高;

  2.以长方形的宽为底面周长,长为高。

  其中,第一种方式得到的圆柱体体积较大。

  2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的

  3、圆柱的特征:

  (1)底面的特征:圆柱的底面是完全相等的两个圆。

  (2)侧面的特征:圆柱的侧面是一个曲面。

  (3)高的特征 :圆柱有无数条高

  4、圆柱的切割:

  ①横切:切面是圆,表面积增加2倍底面积,即S 增 =2πr²

  ②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh

  5、圆柱的侧面展开图:

  ①沿着高展开,展开图形是长方形,如果h=2πr,则展开图形为正方形

  ②不沿着高展开,展开图形是平行四边形或不规则图形

  ③无论怎么展开都得不到梯形

  6、圆柱的相关计算公式:

  底面积 :S底=πr²

  底面周长:C底=πd=2πr

  侧面积 :S侧=2πrh

  表面积 :S表=2S底+S侧=2πr²+2πrh

  体积 :V柱=πr²h

  考试常见题型:

  ①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长

  ②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积

  ③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积

  ④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积

  ⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积

  以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算

  无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积

  烟囱通风管的表面积=侧面积

  只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装

  侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池

  侧面积+两个底面积:油桶、米桶、罐桶类

  二、圆锥

  1、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。圆锥也可以由扇形卷曲而得到。

  2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高

  3、圆锥的特征:

  (1)底面的特征:圆锥的底面一个圆。

  (2)侧面的特征:圆锥的侧面是一个曲面。

  (3)高的特征:圆锥有一条高。

  4、圆锥的切割:

  ①横切:切面是圆

  ②竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,

  即S增=2rh

  5、圆锥的相关计算公式:

  底面积:S底=πr²

  底面周长:C底=πd=2πr

  体积:V锥=1/3πr²h

  考试常见题型:

  ①已知圆锥的底面积和高,求体积,底面周长

  ②已知圆锥的底面周长和高,求圆锥的体积,底面积

  ③已知圆锥的底面周长和体积,求圆锥的高,底面积

  以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算

  三、圆柱和圆锥的关系

  1、圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。

  2、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。

  3、圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。

  4、圆柱与圆锥等底等高 ,体积相差2/3Sh

  题型总结

  ①直接利用公式:分析清楚求的的是表面积,侧面积、底面积、体积

  分析清楚半径变化导致底面周长、侧面积、底面积、体积的变化

  分析清楚两个圆柱(或两个圆锥)半径、底面积、底面周长、侧面积、表面积、体积之比

  ②圆柱与圆锥关系的转换:包括削成最大体积的问题(正方体,长方体与圆柱圆锥之间)

  ③横截面的问题

  ④浸水体积问题:(水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度)容积是圆柱或长方体,正方体

  ⑤等体积转换问题:一个圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的 问题,注意不要乘以1/3

  六年级数学下册期末复习资料(第三单元)

  1、比的意义

  (1)两个数相除又叫做两个数的比

  (2)“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

  (3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

  (4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。

  (5)比的后项不能是零。

  (6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

  2、比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

  3、求比值和化简比:

  求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。

  根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。

  4、按比例分配:

  在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。

  方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。

  5、比例的意义:表示两个比相等的式子叫做比例。

  组成比例的四个数,叫做比例的项。

  两端的两项叫做外项,中间的两项叫做内项。

  6、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。这叫做比例的基本性质。

  7、比和比例的区别

  (1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。

  (2)比有基本性质,它是化简比的依据;比例也有基本性质,它是解比例的依据。

  8、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

  用字母表示x/y=k(一定)

  9、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。

  用字母表示x×y=k(一定)

  10、判断两种量成正比例还是成反比例的方法:

  关键是看这两个相关联的量中相对就的两个数的商一定还是积一定,如果商一定,就成正比例;如果积一定,就成反比例。

  11、比例尺:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

  12、比例尺的分类

  (1)数值比例尺和线段比例尺 (2)缩小比例尺和放大比例尺

  13、图上距离:

  图上距离/实际距离=比例尺

  实际距离×比例尺=图上距离

  图上距离÷比例尺=实际距离

  14、应用比例尺画图的步骤:

  (1)写出图的名称、

  (2)确定比例尺;

  (3)根据比例尺求出图上距离;

  (4)画图(画出单位长度)

  (5)标出实际距离,写清地点名称

  (6)标出比例尺

  15、图形的放大与缩小:形状相同,大小不同。

  16、用比例解决问题:

  根据问题中的不变量找出两种相关联的量,并正确判断这两种相关联的量成什么比例关系,并根据正、反比例关系式列出相应的方程并求解。

  17、常见的数量关系式:(成正比例或成反比例)

  单价×数量=总价

  单产量×数量=总产量

  速度×时间=路程

  工效×工作时间=工作总量

  18、

  已知图上距离和实际距离可以求比例尺。

  已知比例尺和图上距离可以求实际距离。

  已知比例尺和实际距离可以求图上距离。

  计算时图距和实距单位必须统一。

  19、播种的总公顷数一定,每天播种的公顷数和要用的天数是不是成反比例?

  答:每天播种的公顷数×天数=播种的总公顷数

  已知播种的总公顷数一定,就是每天播种的公顷数和要用的天数的积是一定的,所以每天播种的公顷数和要用的天数成反比例。
猜你感兴趣:

1.六年级下册数学期末复习资料

2.六年级人教版数学期末复习资料

3.新人教版数学六年级下册复习资料

4.人教版六年级下册数学复习资料

5.六年级下册数学复习资料人教版

6.小学六年级下册数学复习资料

3361017